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Artificial intelligence and 
health
Potential and challenges

Health is one of the areas where a significant contribution of 
artificial intelligence (AI) is expected, with implications for the 
cost, quality and efficiency of medical attention, including 
preparation and response capacities for health emergencies. 
Nevertheless, there are major challenges related to security, 
privacy and access to data, and the generation of inequalities. 
Legislation, regulation, evaluation and human supervision are 
key elements to facilitate its implementation in professional 
practice.

Professional and social expectations worldwide see the potential of AI to produce 
a qualitative leap in healthcare. This is particularly the case for the diagnosis and 
treatment of patients, clinical management tasks and logistics, or in different aspects 
of public health. 

The current clinical use and implementation of AI in prevention and healthcare on a 
global scale is severely limited due to social, technical and regulatory challenges.   

In the clinical context, developments focus principally on support for healthcare 
professionals and respect for the autonomy of people, rather than seeking automation 
without human supervision. AI can also directly contribute to the self-care of people.

The development of new applications and their subsequent adoption by professionals 
requires collaboration between diverse sectors: research, industry, hospitals, the 
healthcare sector, regulation, assessment and legislation. 

The availability of quality data is essential to develop AI applications. Despite the high 
degree of digitalisation of the health system in Spain, medical data are underused in 
R&D&i. The proposal for a European Health Data Space seeks to facilitate the use of 
this information.  

The European Union fosters an ethical development of AI that benefits citizens and 
respects their rights. The latest proposals for European regulations on AI establish that 
high or limited risk applications must meet a series of requirements before and after 
entering the market.
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Introduction

Artificial intelligence (AI) is a science and a group of analytic and information science technologies that can achieve 
complex objectives based on information1 (Key point 1). Although this field has existed since the end of the 1950s2-4, 
new techniques, large volumes of data and high-capacity computing have brought about the disruptive innovation 
experienced in recent years5-7. The current interest in the application of AI is due to its capacity to perform particularly 
complex tasks on a large scale in a more efficient way than human intelligence; particularly: visual perception8-10, 
processing spoken and written language11-14 or physical interaction with the environment15,16. Nowadays, Health 
and medicine is one of the fields where the greatest impact is foreseen5,17. At the national level, the Digital Spain 
2025 strategy18, Digital Health Strategy19, the Artificial Intelligence National Strategy (ENIA)20 and the Spanish R&D&i 
Strategy in Artificial Intelligence21 cover different aspects of the development of artificial intelligence in the field of 
health, among other subjects. The Strategic Projects for Recovery and Transformation (known as PERTE in Spanish) 
in Vanguard Health22 and New Economics of Language23 also cover developments in this field. At a European level, 
there are noteworthy initiatives and programmes like the Digital Europe Programme24 or the EU4Health programme 
2021-202725.

Key point 1. What is artificial intelligence (AI)?
Objectives of using AI. The original intention2,3 was to achieve a general artificial intelligence, similar to or even 
greater than human intelligence: artificial superintelligence. As this proved too complex a task, most of the scientific 
effort in this field turned its focus on the development of specific artificial intelligence, which would be highly 
efficient in performing a single task under strictly controlled conditions, for instance, playing chess. The many 
techniques and focuses employed for widely varying purposes mean that defining AI is particularly difficult1.
Definition of AI. The European Union has an umbrella definition as a basis for developing new regulations26. This 
defines the objective of AI as making recommendations or taking specific decisions that can directly influence the 
environment with which it interacts. This definition includes most sub-disciplines: from statistical methods and 
logic coding of knowledge to what is currently the most disruptive area, machine learning.
Machine learning. A sub-discipline of AI in which a programme “learns” based on experience (from databases 
or physical sensors). Such learning can be maintained over time as new experience is acquired27 and enables the 
extraction of new patterns and information not previously known. There is a broad diversity of learning variants for 
different tasks and specific functions28.
Deep learning. It is a variant of machine learning which uses multilevel neural networks. In a neural network, each 
neuron performs an operation and, when it connects with millions of other neurons with multiple processing layers 
and abstraction it forms a deep network29,30, which can detect the characteristics of data by itself. In the field of 
medicine, this began to work well ten years ago with medical imaging, and this is the technique currently causing 
the greatest disruption31. It has also brought major advances in the modelling, use and digital processing of human 
language32-34.

Professional and social expectations worldwide see the potential of AI to produce a qualitative leap in healthcare35. 
Among other possibilities is the potential to contribute to reducing the variability of healthcare between regions or 
countries36-38, or improving the capacity to anticipate and prepare for health emergencies39. The development of new 
applications and their subsequent professional adaptation require collaboration between diverse sectors: research, 
industry, hospitals, the healthcare sector, regulation, assessment and legislation5. Despite the current worldwide 
momentum in this area and the existence of some successful projects, the deployment of these tools in healthcare 
and medicine is not widespread5,17,40,41. Nowadays, the complex technical, ethical, social and regulatory challenges 
necessary to achieve trustworthy AI are being resolved, both within Spain20 and in the EU42,43. Finally, the availability of 
quality, interoperable data is essential to develop specific AI applications. The European Commission has highlighted 
the value of sensitive health data44 and estimates that its re-use for R&D&i may amount to an economic value of some 
25 to 30 billion euros per year44. Nevertheless, this potential is still underused in Europe.

Introduction
The potential of technologies with AI in health
Towards implementation in healthcare 

Achieving trustworthy AI
Management and governance of health data  
Regulatory framework
A new digitised healthcare professional environment
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The potential of technologies with AI in healthcare

Among its benefits, AI can reduce the cost of some procedures while increasing their efficiency9,45. A 2017 report 
considered that including AI to combat diseases and conditions on the increase (specifically childhood obesity, 
breast cancer and dementia) could mean annual savings in Europe of 17,200 million euros46. Additionally, some degree 
of automation saves time, allowing healthcare professionals to devote more quality time to their patients5.

According to a European-wide survey47, current developments focus on tools for diagnosis (21%), self-care, early 
prevention and monitoring (14%) or as support systems for clinical decision-making (18%). But the focus of research 
covers more aspects of its potential use: AI can achieve major advances in biomedical and clinical research17,48 and 
rare diseases10,49, serve as support during surgical interventions in real time50, predict a patient’s clinical outcome51,52 

or expedite management of logistics and administrative tasks53-55. Likewise, it can contribute to decision-making in 
public health and in preparation and response to health emergencies (Key point 2). However, most of the applications 
described in the scientific literature have not been validated in a real-life clinical setting53,56.

In addition, most of the development and introduction of this technology occurs outside Spain, with the USA and 
China at the forefront of knowledge transfer and investment in AI-based start-ups45,47. Some consortia and business 
associations highlight difficulties and delays in getting medical and healthcare products and devices on the market, 
in general due to the differences in interpretation of European regulations by member states, the complexity of 
reimbursement and acquisition58, or a lack of speed in authorisations59. The objective of AI in the field of healthcare is 
to function as support for the worker, rather than generating automation without human supervision53,60. The following 
sections discuss applications that are at different stages of research and implementation. The focus is on applications 
that are closest to use in the short-term in real-life clinical practice, or ones with the greatest potential in healthcare.

Support in prevention, self-care and wellness. AI can quickly examine a large number of patients at a very low cost41. 
This helps in early risk prediction, for instance, in heart function61,62 or in the diagnosis of tumours63, lung cancer64, 
skin cancer65 or dangerous eye lesions66-70. Such early detection of different types of cancer is related with a better 

prognosis 71. On the one hand, some AI applications can be used directly by the 
patient. In this area, AI-based digital assistants have proved to be a useful aid 
to help improve the self-care of people who require follow-up53, such as type 2 
diabetes patients72,73.

Diagnostic support. In the USA, estimates suggest that one in twenty adults 
has suffered a diagnostic error74, which would be avoidable with the help of AI17. 
Moreover, it has been shown that for different types of cancer it can enable more 
exact, quicker assessments75-77, for instance, in breast78,79, colorectal80-82, or skin 
cancer83. Likewise, in the field of mental health, some studies have been able to 
predict the appearance of psychotic episodes based on language, with a reliability 
up to 93% under laboratory conditions84,85. Despite these successful examples, 
several studies indicate the difficulty of introducing AI-based diagnostic tools 
in real-life clinical practice. The appearance of COVID-19 spurred the search for 
diagnostic support tools in imaging. However, a systematic review of 62 methods 
(from 2212 scientific articles) showed that none were reproducible in a clinical 
setting, due to methodological shortfalls or data bias at origin86.

Logistic support. Natural language processing (NLP) technology87 enables 
simplification and a reduction in the length of medical texts. So, a long report 
with dozens of pages can be transformed into a brief synthesis, adapted so that 
non-specialists can understand it88-91. AI can also compose parts of medical 
discharge reports92, or tag and generate radiology reports93,94, freeing up the time 
of healthcare professionals. It can also automatically enrich clinical terminology 
databases and add knowledge to the most commonly used medical information 
systems 95. Initiatives are underway to optimise hospital management of resources 
and medical personnel in emergency situations that may occur in an emergency 
service 55. It has been shown that AI tools would help guarantee equity and a 
better quality of healthcare, reducing patient waiting times or improving response 
in situations of overload during waves of COVID-1996,97.

Therapeutic support. AI plays an important role in developming and applying 
personalised precision medicine22,98, with models tailored to each personal 
profile99. A study evaluating the use and dosage of different treatments found 
that patient mortality was lower when the procedure used coincided with 
the recommendations of an AI-based assistant100. Devices that use AI can 
also be prescribed in the same way as medication, in what is known as digital 
therapeutics101,102. AI can also be included in robots, where data arrives via 
sensors (from intelligent visual perception or spatial perception), resulting in 
direct physical interactions of the device with the patient’s environment or the 
healthcare professional or assistants103,104. Finally, another tool that will be used in 
the future is digital twins: computer models of organs or even an entire person105 

that, among other functions, will enable simulation of response to treatment before 
it is administered105. This line of research has already received funding under the 
programme R&D Missions in AI, managed by the State Secretariat for Digitalization 
and Artificial Intelligence (SEDIA)106.

Drug discovery. Finding new drugs and bioactive compounds has benefited from AI 
tools 107 and key advances like the understanding of the structure of proteins108,109. 
It is also possible to infer new properties of medicines using the scientific literature 

Digital assistant: a programme 
that undertakes tasks or provides 
a service to an individual based on 
guidelines or questions. A chatbot is 
an example of a conversation-based 
digital or virtual assistant. 

Natural language processing (NLP): 
a type of AI that enables spoken 
or written human language to be 
automatically interpreted and/or 
generated by a computer.  

Clinical terminology: a set of specific 
terms related with medical practice 
and based on healthcare provision 
for patients.One used in Spain is 
SNOMED-CT, a terminology that 
enables the input of standardised 
clinical information associated with 
codes.

Personalised precision medicine: 
personalised medical attention 
with decisions and treatments 
specifically tailored for each 
individual.

Digital therapeutics: programmes 
or devices that provide evidence-
based medical intervention, 
prescribed and regulated in a 
similar way to medication. 



Report C: Artificial intelligence and health: potential and challenges
Date publication 14/11/2022

3/7

and applying natural language processing 110,111.

Key point 2. Artificial intelligence in public health.
Around 60% of deaths worldwide are due to a cause associated with the socio-economic and environmental 
context in which people live112. It is currently possible to assess these contexts and measure the associated risks by 
using information from social networks113, meteorological agencies114, citizen science115, personal devices for health 
monitoring (wearable technologies)116, or smartphones117,118. This work falls within the field of public health: the set 
of activities organised by public administrations, with the participation of society, to prevent illness and protect, 
promote and recover individual and collective health119. Among other actions, this includes monitoring risks that 
might have an impact on the health of the general public120. In this context, monitoring and managing epidemics and 
pandemics can potentially benefit from the use of artificial intelligence tools117, 121.
COVID-19. During the COVID-19 pandemic, researchers around the world generated a multitude of tools based 
on AI capable of detecting outbreaks122, automatically checking symptoms123, predicting the number of cases124 

and tracing contacts125. These applications used data from collaborating citizens126 and smartphones117. Although 
major limitations were found, future applications that use data from multiple sources could provide an adequate 
approximation to avoid both individual risk and the appearance of new outbreaks117.
Mosquito-borne diseases. In Spain, there is a potential risk of the proliferation of tropical diseases transmitted 
by mosquitoes (dengue, yellow fever, White Nile virus, Zika or Chikungunya). Recent decades have seen larger and 
smaller outbreaks at different points in Spain127-129. Currently, the use of images collected with collaboration of 
the general public, provides important support data for monitoring, risk assessment, management and control of 
mosquitoes in cities130. The combination of this model with artificial intelligence39,115 has the potential to expedite 
monitoring and cover larger geographical areas, both in Spain and internationally39,127,131.
Mental health and social networks. Using sentiment analysis, language processing can detect behaviour patterns 
on social networks. Hence, AI can contribute to the prevention of cyberbullying, hate speech132 or suicide, and 
detect anxiety or depression133. The use of smartphone data is also being considered to avoid suicide and assess 
emotional states134,135.
Links to precision medicine. The social and environmental information traditionally associated with public 
health118,136,137 could eventually contribute to precision medicine136. In the same way that genomics is used to 
perform highly tailored adjustments for each personal profile, it is also possible to identify specific environmental 
determinants for health and disease138. Work is also underway to predict clinical outcomes based on information 
obtained from personal devices139.

Towards implementation in healthcare

Despite a growing interest and research into AI applications in healthcare, even with the pilot projects undertaken by 
certain hospitals, there is no generalised transfer of this technology for use in clinical practice140-143 due to a series of 
challenges144,145. The following section details the requirements necessary to achieve reliable, trustworthy AI42,145-147, 
the challenge involved in the need for large amounts of quality health data148,149, protection of patient privacy150, and 
the need to create new frameworks for regulations and professional transformation47,53,151. The Artificial Intelligence 
National Strategy (ENIA, in Spanish), published in 202020, aims to tackle these challenges in Spain and to enable the 
development of inclusive, sustainable AI for all sectors that focuses on citizens.

Achieving trustworthy AI

Reliability or trustworthiness is a prerequisite if people and societies are to develop, implement and use AI 
systems145,152. If this were not the case, undesirable consequences might arise that prevent its adoption or generate 
a perception of insecurity, discouraging its use142,153. According to recent studies, the attitude of society to the arrival 
of AI in medical practice is generally positive. Still, this research also indicates that there are different concerns and 
human supervision is preferable to full automation154,155. The following section provides details of some requirements 
necessary to achieve greater trust in AI in the healthcare sector.

Human action and supervision. Recommendations indicate that healthcare 
AI systems should support the autonomy and decision-making of people42,53. In 
particular, autonomous clinical prediction and decision-making could imply a 
risk for people unless there is human supervision53. In this context, some research 
has provided healthcare professionals with AI applications to monitor whether 
there is an improvement in the diagnostic process156. Among their conclusions, 
studies found that risks related to human error decrease53 because a machine can 
automatically detect problems that a tired worker, for instance, might overlook5, 53. 
However, other research indicates that an excess of trust in an automated system 
can also lead to inappropriate decision-making153.

Clinical prediction and decision-
making: clinical prediction models 
are tools that allow the estimation 
of risk or the probability of having 
or developing a disease. They 
contribute to clinical decision-
making.

Safety and efficacy. Tools based on AI should generate fair, robust, trustworthy predictions in the real-world clinical 
setting157. Nevertheless, much of the initial research worldwide has been conducted outside the clinical setting, 
from a technical perspective153,158,159, with the available data, which may be limited, biased or not high quality148,149, 

158. This makes it difficult to assess many of the imperfections and its effectiveness in real-life clinical practice153. 
Premature deployment of such systems may result in pressure on the health system, diagnostic error or stress for 
patients142,153,158. In order to prevent this scenario and accelerate the transfer of research to clinical practice, some 
scientific publications recommend considering ethical implications throughout the entire process of development, 
evaluation and implementation160.
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Explainability. Multiple reports highlight the importance of being able to explain AI-supported decisions when they 
have an impact on the lives of individuals145,161, which often occurs in healthcare. This quality also means that an AI 
system can be audited in the case of legal requirements, errors or if harm has been caused145. However, there are 
times when it is not easy to explain how an outcome has been reached using algorithms, particularly those based 
on deep learning29. A currently active line of research is the creation of explainable models162-164. Nevertheless, some 
specialists cast doubt on explainability guaranteeing confidence in AI systems and support the idea of reinforcing the 
safety and efficacy of the systems164,165.

Avoiding the risk of discrimination and inequalities. The risk of social discrimination exists for two reasons: the 
use of databases that do not equally represent specific groups of people166, or due to decisions taken during the 
development and implementation of algorithms by the developers167. A development that does not consider diversity 
criteria results in devices that exacerbate the bias and discrimination already existing in society, such as prejudice 
related to racial origin168,169, socio-economic situation169,170, region of residence171 or gender167,172. Experts indicate 
that this issue is particularly important in healthcare AI, since in this sector worldwide there are very few teams of 
developers headed by women173. Algorithmic bias produces more diagnostic errors for the discriminated groups 174 
and may create a digital divide in healthcare166. To mitigate the risk, bias should be considered from the moment of 
technological development and throughout the processes of regulation and legislation146, as should social context 
175. For cases where it is difficult to achieve representative data, there is research underway that uses a focus with a 
smaller amount of data 176-178 or synthetic data (built using computer-based methods) 179-180.

Minimising the risk of cyberattacks. The increasing digitalisation of the health system opens the door to new 
vulnerabilities and an increase in cyberattacks150,181,182. Working environments that guarantee cybersecurity are a 
current area of research, although the European Commission affirms that there is still a long road ahead before 
achieving the cybersafe implementation of AI44. In addition to general vulnerabilities, applications based on AI in 
healthcare have specific ones183; for instance, in medical imaging analysis, a malicious alteration of pixels could lead 
an algorithm to reach completely erroneous conclusions about a patient184,185. Some attacks of this nature are easily 
detected with warning systems186.

Legal changes to civil liability. Law is an area where AI has great impact187-190. The European Commission Expert 
Group on Liability and New Technologies concludes that, due to the characteristics of AI systems191, it could be more 
difficult to decide damages for victims. Another hurdle could be the identification of the liable party and attribution 
of liability, which could be unjust or inefficient. To rectify this, the group argues for the need to make changes in civil 
liability legislation and regulations in the European Union and in member states192. The European Commission has 
prepared two initiatives to reform the Directive on Defective Products to include the particulars of smart products 
and products with AI systems (robot assistants, surgical robots, etc.) and propose common liability regulations in the 
case of harm caused by AI systems193,194.

Management and governance of health data

For AI-based systems to generate reliable results, large, high-quality databases 
are necessary at an initial training phase, as are validation of models and obtaining 
knowledge. Data can be obtained from images (radiological, dermatological, 
etc.) text (medical reports), genomics or other type of information, like social 
surroundings or the environment195. Improving management and governance is one 
requisite to expedite R&D&i and its implementation by the research, technology 
and business sectors. With this objective, progress should advance towards a 
greater availability, accessibility and interoperability of health data44,196, while 
respecting the General Data Protection Regulation (GDPR)197.

Quantity and quality of data as the basis for trustworthy AI. A European 
Commission study indicates that there is a loss of health efficiency in Spain and 
in Europe derived from a lack of interoperability, standardisation and semantics, 
or difficulties to access, interchange and analyse big data198,199. Among other 
difficulties, this complicates the reuse of data in R&D&i, which forms part of the 
Digital Health Strategy19. For data to be accessible and usable by a machine learning 
algorithm, they must be stored in a standard way28,200. Despite the high degree 
of digitalisation in Spain198 and Spanish public sector initiatives to standardise the 
data of digital medical records198,201 image repositories202, genome biobanks202 and 
cancer registries203 health information is still underused in R&D&i44,199. However, it is 
essential for the development of personalised precision medicine98. The application 
of FAIR principles200,204,205 alongside the knowledge and tools already available 
could facilitate the use of data for R&D&i in AI. It should be noted that databases 
with errors or incomplete data may lead to imprecise or erroneous indications206.

Understanding the languages used by the population. Approximately 40% of 
work in AI uses human language as its basis207, and many healthcare applications 
could use the information contained in digital medical records201. However, 
much of this data is in unstructured text format that cannot be easily analysed 
(general calculations estimate this could be as much as 80%)32. For this data to 
be transformed into useful information requires linguistic resources specific to 
healthcare, in the languages spoken by the target population32. Although Spanish is 
the second most spoken language in the world and holds fifth place in the number 
of scientific publications, English remains the dominant language of technical 
developments208. In Spain there is a movement to boost AI in Spanish, which is the 
aim of the MarIA project23,34. There are other initiatives with the same objectives 
in Spain’s other co-official languages. AINA in Catalan209-211, Nós in Galician212 or 
the GAITU plan in Basque213. The PERTE of the New Economics of Language, which 

Interoperability:  capacity of 
information systems and of the 
procedures they support to share 
data and enable the interchange of 
information and knowledge.

Standardisation:  the process of 
making, applying and improving 
different regulations to impose order 
on a specific activity.

FAIR principles: the FAIR principles 
are precise, measurable qualities 
for data publication. The acronym 
stands for findability, accessibility, 
interoperability, and reusability. 

Linguistic resources: datasets 
and their descriptors in electronic 
format to construct natural language 
processing systems and applications 
for specific areas (such as health). 
In simple terms, these resources 
are corpora of annotated and non-
annotated texts (the words have 
tags with additional information), 
lexicons (ordered series of words), 
dictionaries or ontologies (relations 
between words).
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continues the work undertaken in 2015’s Promotion of Language Technologies Plan 
(Plan de Impulso de Las Tecnologías del Lenguaje), promotes the development of 
AI in the official languages in specific areas such as health, and also encourages 
pan-hispanism: progress in conjunction with the Spanish-speaking countries of 
the Americas and reinforcement of the use of Spanish in the digital world23.

Privacy and access. In Europe and Spain, access to sensitive data about patients 
for R&D&i150 must guarantee compliance with current regulations on privacy and 
data protection (GDPR)214,215. Health data protection is a legal requirement215, which 
makes it important to consider privacy by design and by default when working 
with big data216. Nevertheless, implementation of the GDPR in the area of health is 
complex and would benefit from specific ethical, legal and operational guidelines 
when the data are for use in AI217. Specifically, at a technical level, to avoid data 
re-identification218. A specialist group report47,217 recommends employing 
pseudonymisation219, encryption, or differential privacy220. On the other hand, to 
conduct clinical trials based on real-world evidence it is necessary to decode the 
information in electronic health records. In this task, AI techniques can help hide 
personal or sensitive information221.  

Interoperability. Refers to the capacity of interchanging and using data from 
different sources in a simple, automated way. In Spain and in Europe, the use of 
medical information for R&D&i in AI has been hampered by unequal interoperability 
and by regional fragmentation42,222. In recent years, the healthcare and research 
communities have sought to reduce the heterogeneity of information by means of 
standardising knowledge in clinical terminology223,224, and by aligning the formats 
and information contained in electronic health records225,226. In Spain, the current 
Digital Health Strategy includes the goal of having quality interoperable data at 
national and international levels 19. The Data Office (Oficina del Dato)18,227, has 
participated in setting up the creation of a National Health Data Space to generate 
scientific knowledge19,228. This strategy is complementary to and forms part of the 
European proposal that follows44,229.

The European Health Data Space (EHDS). The proposal of an EHDS seeks to 
improve healthcare and accelerate research in health. Among its objectives is 
facilitating access to sensitive health data to public and private R&D&i agents 
for the development of AI44,229. The governance, regulations, standard practices 
and infrastructures included cover the possibility of efficiently sharing health 
data. This regulation has its foundations in the NIS cybersecurity directive230, 
the General Data Protection Regulation (GDPR)219 and FAIR principles204,205. With 
the application of  the Data Act, which the EHDS is also based on, the European 
Commission estimates savings of 120,00 million euros in the EU healthcare sector 
each year231,232. A pilot programme is scheduled for 2022 in which all European Union 
member countries must participate44. In Spain, actors related with ehealth have 
favourably received this proposal58. A national scale project, IMPaCT, is building 
the technical foundations to use health information in precision medicine and will 
be responsible for implementing EHDS recommendations in research202. Likewise, 
although at a much earlier stage, proposals exist for a European Language Data 
Space, aimed at compiling, creating and reusing language data for all industries, 
including healthcare223.

Machine learning adapted to the governance of health data.  AI can use the  data 
stored in different infrastructures through federated learning234,235, or its evolution, 
swarm learning236. Swarm learning, in particular, minimises the problems associated 
with privacy220 and cybersecurity237-239 by means of data pseudonymisation and 
encryption. The European Health Data Space will be a decentralised system with 
the potential for use by these types of AI44.

Data re-identification: or de-
anonymisation, is analysing 
anonymised data to discover the 
individual to whom data belong.

Pseudonymisation:  the process 
by which data is generated that 
cannot be attributed to a party 
without the use of additional 
personal information that must figure 
separately. This is different from data 
anonymisation, in which no personal 
information of any type exists.

Encryption: representation of 
information in such a way that only 
authorised parties can decode it.

Swarm learning:  a type of machine 
learning that builds models 
independently in a private data 
network. Its main advantages are 
its compatibility with cyber-secure 
technologies and guarantees of 
sovereignty, security and privacy. 

Differential privacy: system that 
enables the collection and analysis 
of data without compromising the 
identity and privacy of the data 
providers. Adding randomness to 
the data can make the relationship 
between the individual and the 
dataset less clear.

Data space:  an ecosystem in which 
diverse independent actors safely 
and voluntarily give access to their 
data following common mechanisms 
of governance, organisation, 
regulations and techniques. This 
may be created at regional, national 
or international level. Adding 
randomness to the data can make 
the relationship between the 
individual and the dataset less clear.

Federated learning: a type of 
decentralised machine learning that 
works, for instance, in a data space. 
It has the advantage of not requiring 
data interchange or transfer, thus 
reducing privacy and security risks.
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Regulatory framework

European regulation 2017/745 determines whether a tool is a medical device, and therefore, whether it is subject to 
having to obtain the CE mark (Conformité Européenne, in French) necessary for its sale within the European space240. 
In Spain, this certification is awarded by the Spanish Certification Agency of Medicines and Medical Products (Centro 
Nacional de Certificación de Productos Sanitarios - AEMPS). Current regulations on AI deal with software in a generalist 
way and do not contemplate all its particularities. This means that during the certification process the continuous 
learning capacity of some applications must be limited and only static models that have stopped learning can be 
approved, above all if the data is related to its use in a real-life clinical setting241. In consideration of the characteristics 
of these types of tools, in 2021 the European Commission made a proposal for the regulation of artificial intelligence 
(the AI Act)242, which defines the European standards for the development, marketing and use of AI-based products 
in all industries throughout the European Union. It proposes a risk-based analysis, in which the uses or applications 
classified as high or limited risk have to meet a series of requirements related to security, efficacy and robustness 
before and after going on the market. Once on the market, these tools should have monitoring systems to ensure their 
application remains trustworthy242. The AI Act contemplates the designation of a competent national authority to 
supervise the application and implementation of market regulation and monitoring242.

Although still at the planning stage, in 2022, Spain is promoting the creation of 
a Spanish Agency for Supervision of Artificial Intelligence (Agencia Española de 
Supervisión de Inteligencia Artificial - AESIA)243. Spain is also a pioneer in the 
creation of a regulatory sandbox for AI, which will enable the testing of technical 
and regulatory solutions related to the AI Act in a controlled environment244,245.

Acquiring certification is an indispensable requirement to put a medical device on the market. However, for a device 
or product to be considered for inclusion in the Common Services Portfolio of the Spanish National Health System, 
like any other medical and healthcare device, those that include AI must be evaluated for its use in clinical practice246. 
Deployment of the current European regulations for health technology assessment will consider dimensions for 
assessment applicable to all countries in the European Union247, and member states will be able to add any other 
dimensions they consider pertinent. In Spain, this assessment is made by the Health Technology Assessment Network 
(known as RedETS)248, whose current manual relates to the general dimensions of health technologies: the health 
problem it is aimed at, a description of the technology, its safety, efficacy, effectiveness and cost-effectiveness249. 
RedETS has prepared a new framework for evaluation that includes the particularities of AI in a real-world clinical 
setting250. Among others, it includes the need to compare the performance of healthcare workers with and without 
the support of AI, since many tools are intended for use with, not substitution of, personnel148,251,252.

A new digitised healthcare professional environment
In Spain, 71% of the population believes that AI and automation will cause job loss in different industries253 and, indeed, 
in the mid-term and only for certain applications, some studies suggest that professionals trained in digital health 
competence to use AI could replace those who are not254. A survey of 233 radiologists in Spain showed that there 
is a demand for training in artificial intelligence, computing and new technologies in medicine, and that this should 
be included in their medical specialisation151. Studies indicate that professional groups should be familiar with the 
limitations and strengths of a deep learning-based system, and therefore training syllabi should be updated255. 
Training is included as a priority in the Vanguard Health PERTE, and includes actions related with training in digital 
competencies22 as well as specific postgraduate programmes in public administration and governance256. These 
new skills are essential to promote better cooperation between scientific data personnel and medical staff to obtain 
correct data and the successful development of applications257. This is also true for an integration in real-life clinical 
practice that includes security risk assessment8,258. In coming years, new specialist professions are expected to arise 
based on digitalisation and on the arrival of AI in the healthcare sector, and likewise AI will have an impact on the way 
we work and our cognitive skills183,259. The incorporation of these technologies should be associated with a cultural 
change and the evaluation of their acceptability for patients and healthcare professionals260,261.

AI in the social context of the future

Despite the fact that AI has the potential to contribute to improving health in tomorrow’s societies262, not all countries 
are committed to it in the same way. According to the AI Index263, which evaluates the development of this technology 
in an international context for all sectors, the USA, China and the United Kingdom are the countries that predominate 
in international collaborations. In our context, France has made enormous advances, with242 AI businesses set up 
between 2013 and 2021. Spain leads the EU ranking for mentions of AI in legislative procedures in the year 2021263.

One of the social challenges faced by Spain is based on official demographic projections264,265. It is estimated that 
the population over the age of 64 in Spain will have increased by up to 5 million people by the year 2035 and could be 
double in 2050266 with the consequent increase in healthcare pressure associated with old age and chronic disease. 
AI-based applications, both software and physical supports, are capable of performing tasks very efficiently and could 
therefore contribute to covering this demand267. In radiology, for instance, it would help to interpret a high volume of 
images, minimising the fatigue of professionals and the associated error268. In direct care, healthcare workers (nurses, 
auxiliary staff, carers) and older people could have the support of robotics to improve their autonomy and quality 
of life15,262, 269,270. Japan, whose demographic projections are similar to those of Spain, is making large investments in 
assistive robotics, support robotics and the automation of small tasks16. All of this has the potential to free up time for 
the corresponding professional groups 5. In Spain, therefore, there is a growing interest in AI-based technologies as 
they can contribute to sustaining the future healthcare of citizens19,267.

similar a la española, se están invirtiendo grandes cantidades de dinero en robótica asistencial, de apoyo, y para 
la automatización de pequeñas tareas16. Todo ello con el potencial de dar más tiempo útil al colectivo profesional 
correspondiente5. En España, por tanto, el interés es creciente y radica en que las tecnologías basadas en IA pueden 

Regulatory sandbox: a safe space to 
test new regulatory processes. The 
concept comes from the financial 
sector, although it has expanded to 
other fields.
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contribuir a sostener la salud de los ciudadanos en el futuro19,267.
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